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We present a numerical method to identify possible candidates for quasi-stationary manifolds in complex
reaction networks governed by systems of ordinary differential equations. Inspired by singular perturbation
theory, we examine the ratios of certain components of the reaction rate vector. Those ratios that rapidly
approach a nearly constant value define a slow manifold for the original flow in terms of quasi-integrals, that
is, functions that are nearly constant along the trajectories. The dimensionality of the original system is thus
effectively reduced without reliance on a priori knowledge of the different time scales in the system. We also
demonstrate the relation of our approach to singular perturbation theory which, in its simplest form, is just
the well-known quasi-steady-state approximation. In two case studies, we apply our method to oscillatory
chemical systems: the 6-dimensional hemin-hydrogen peroxide-sulfite pH oscillator and a 10-dimensional
mechanistic model for the peroxidase-oxidase (PO) reaction system. We conjecture that the presented method
is especially suited for a straightforward reduction of higher dimensional dynamical systems where analytical
methods fail to identify the different time scales associated with the slow invariant manifolds present in the
system.

1. Introduction

Realistic modeling of complex reaction networks, such as
those describing metabolism,1,2 atmospheric chemistry,3,4 and
combustion,5,6 usually requires the integration of quite large sets
of equations which are systems of nonlinear ordinary differential
equations (ODEs) provided that transport processes such as
diffusion or convection are not taken into account.

We shall consider systems of the following form:

where x and k denote the chemical species and all the
parameters, respectively. For realistic reaction networks, the
dimensionn of system 1 can easily get in the order of hundreds
(for instance, in the detailed description of combustion reactions6

or the Belousov-Zhabotinsky reaction7). Even on fast comput-
ers, the numerical integration of such systems can be very time-
consuming. Moreover, one is usually interested in investigating
the system’s behavior as one or more externally tunable
parameters are continuously varied. This makes a straightfor-
ward integration of hundreds of equations inconvenient from a
practical point of view. A reduction of complex reaction
networks, on the other hand, may also be desirable for theoretical
reasons:

First, one would like to identify those reaction steps and
chemical species in a given mechanism that are necessary to
generate a certain type of dynamics. While a general answer to

this question is still unknown, there are already promising results
for bistable8 and oscillatory systems.9,10 The main tools of
investigation in this field are stoichiometric network analysis11

and sensitivity analysis.12 Both theoretical approaches have been
successfully combined with principal component analysis to
identify essential reaction steps in diverse systems such as the
metabolism of red blood cells13 and the Belousov-Zhabotinsky
reaction.14

Second, chemical reactions naturally evolve on different time
scales. Accordingly, their temporal evolution can be decomposed
into a fast transient relaxation to lower dimensional invariant
manifolds and a subsequent slow evolution on the union of these
manifolds, which often still captures the interesting type of
dynamics on experimentally accessible time scales. The math-
ematical description of such reaction networks leads to singularly
perturbed systems for which a well developed theory exists.15-17

As a result, a lower dimensional approximation to the original
ODE system is obtained.

Meanwhile, several methods exploiting singular perturbation
techniques have been proposed to simplify complex chemical
reaction networks, such as lumping schemes18 or the approxima-
tion of the invariant manifold based on a functional equation.19

However, before these techniques may be successfully applied,
one needs to identify the different time scales in the system.
They usually show up as small dimensionless parameters in front
of time derivatives of some of the phase space variables,
indicating that these variables vary significantly only on very
short time scales and henceforth follow instantaneously (alge-
braically) the dynamics of the slow degrees of freedom. The
conventional strategy for searching for a small parameter is to
introduce new dimensionless variables such that some combina-
tion of intrinsic system parameters becomes sufficiently small
and subsequently may be used as a singular perturbation
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parameter. Clearly, this procedure becomes a formidable task
in more complex reaction networks and other methods are
required, for example, the method of computational singular
perturbation.20 Furthermore, the rescaling procedure is not free
of ambiguity in choosing the “right” scales,21 and if the rescaled
phase space variables are not bounded from above and below,
then the rescaled kinetic parameters do not provide any
indication of whether the corresponding reaction step is slow
or fast. Thus, one is often guided by chemical intuition or
experimental expertise in grouping the individual reactions
according to slow and fast steps. Once the different time scales
of a system are known, it is more or less straightforward to
apply singular perturbation techniques to obtain a lower
dimensional approximation of the original dynamics on a slow
manifold of the system.

In the present article, we propose a method based on the
successful identification of a certain class of quasi-integrals
which arise as ratios of those components of the reaction rate
vector which are nearly constant along the trajectories of ODE
system 1. As a result, possible slow manifolds for a given
reaction network are obtained without the aforementioned
prerequisites, that is, necessity of rescaling and chemical
intuition. Thereafter, we use the method of parameter embedding
as described by Stiefenhofer22 to test whether the quasi-integrals
that we found with our method truly define a slow manifold
for the original system. We shall now briefly outline this method.

The embedding method relies on some a priori knowledge
of the order of magnitude of individual reaction steps. Having
identified the fast reaction steps, one may embed ODE system
1 in an ε-dependent family of ODE systems of the following
form (the parametersk are omitted for convenience):

Here, we have collected the fast reaction steps into the
components of the vector-valued functionr(y, z). For ε ≡ 1,
ODE system 2 coincides with (1), provided the identifications
x ≡ (y, z) ∈ Rn-m × Rm and f ≡ (h, r+g) ∈ Rn-m × Rm are
made and the equations in (1) are ordered such that the lastm
of them contain the fast reaction steps. One can now study the
behavior of ODE system 2 for parameter valuesε different from
1. Of particular interest is the case whenε , 1, because then
(2) becomes a singularly perturbed system for which a slow
manifold of the formz ) ψ(y, ε) ) z̃(y) + O(ε) may exist. In
the limit ε f 0, the slow manifold can be approximated by the
quasi-stationary manifoldz ) z̃(y), which is the solution of the
algebraic equationr(y, z) ) 0. This can be seen by introducing
a fast time scaleτ according tot ) ετ. Hereafter, ODE system
2 reads

where the prime sign denotes derivatives with respect toτ. If ε

* 0, the two systems (2 and 3) are completely equivalent. In
the limit ε f 0, however, this equivalence is lost. From (3),
one obtains an approximate equation for the dynamical behavior
of the original system on the time scaleτ:

This equation is called the fast subsystem, and its stationary
states define the quasi-stationary manifold for the flow of the

original ODE system (1). Since the slow variablesy are assumed
to vary significantly only on time scalest . τ, they are to be
treated as constants and act as parameters in (4). The long-
term behavior of the original system on the quasi-stationary
manifold is described in terms of the slow subsystem which is
obtained from (2) in the limitε f 0:

The conditions under which these approximations are valid have
been elaborated by Fenichel15 and will be presented in the next
section when we discuss how quasi-integrals and singular
perturbation theory are related.

Finally, we study by numerical investigations whether
trajectories of the original system (2) (corresponding toε ) 1)
smoothly deform into trajectories of the reduced slow subsystem
(5) (corresponding toε ) 0). (This procedure corresponds to
the homotopy argument used by Stiefenhofer.22) In such a case,
the fast reactions indeed define a quasi-stationary manifold and
the reduction process is a posteriori justified. In this sense, the
method of quasi-integrals may serve as a supplement to existing
methods which rely on prior knowledge of time scales.

In the following section, we introduce the method of quasi-
integrals in detail and elucidate its connection to singular
perturbation theory. After a brief description of the numerical
methods, we present two case studies in which we apply our
method to oscillatory chemical systems. First, we demonstrate
in detail how a 6-dimensional enzyme model system can be
reduced to a 3-dimensional system while maintaining its local
bifurcation structure. The second case study focuses on the
peroxidase-oxidase (PO) reaction. This 10-dimensional reaction
system can be reduced to 6 dimensions, while most of the
qualitative features of the original model are retained. Finally,
we discuss the scope and limitations of the introduced method.

2. The Connection between Quasi-Integrals and
Singularly Perturbed Systems

In the following, we assume that the reaction network under
consideration is of mass-action type, since most chemical
networks belong to this class. Moreover, there is a “natural”
choice for the class of quasi-integral manifolds in such systems
to be looked for. Consequently, we may represent the vector
field in system 1 as

where the components of the reaction rate vectorR(x, k) are
given by

C and κ denote the matrix of stoichiometric coefficients and
the kinetic matrix, respectively. While the former encodes the
network topology, the latter contains the kinetic information of
each individual reaction step. Both matrices have as many rows
as there are chemical species (n) and as many columns as there
are individual reaction steps (r) in the network. Due to (6), the
components of the vector fieldf that appear on the right-hand
side of ODE system 1 are linear combinations of components
of the reaction rate vectorR, that is,

y̆ ) h(y, z)

z ) z̃(y) (5)

f(x, k) ) C‚R(x, k) (6)

Ri(x, k) ) ki∏j xj
κji i ) 1, ... ,r andj ) 1, ... ,n

x̆l ) fl(x, k) ) ∑
i)1

r

CliRi(x, k) l ) 1, ... ,n (7)

y̆ ) h(y, z) y ∈ R
n-m

εz̆ ) r(y, z) + εg(y, z) z∈ R
m (2)

y′ ) εh(y, z) y ∈ R
n-m

z′ ) r(y, z) + εg(y, z) z∈ R
m (3)

z′ ) r(y, z) (4)
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Now, we claim that whenever a ratio

approaches approximately the constant value-1 along the
trajectories x(t) for a certain combination of indices
l ∈ {1, ... , n}, i, j ∈ {1, ... , r}, we have found a possible
candidate, Iij

l , of a quasi-integral which defines a quasi-
stationary manifold for ODE system 7. Equation 8 may also be
looked at in the following way:

which shows that for quasi-integrals the kinetics of the reaction
network represented by the left-hand side approximately equals
the topological constraints given by the stoichiometric coef-
ficients on the right-hand side. Alternatively, eq 8 may be written
in the form

showing that we are actually searching for reaction steps that
balance each other along the trajectories. Consequently, one has
to consider only such combinationsRi, Rj for which sign(Clj)
) -sign(Cli) is fulfilled. This also explains the choice of “-1”
on the right-hand side of eq 8.

Of course, one can easily extend this definition and try to
balance more than two reaction steps, for instance,

In this case, we would consider quasi-integrals of the following
form:

provided that, for example, sign(Cli) ) sign(Clk) ) -sign(Clj)
holds. Indeed, for the peroxidase-oxidase system, we find two
quasi-integrals of this form (see the Case Studies section). The
motivation for the particular choice of the functionsIij

l (eq 8)
and their alternative representationsĨ ij

l (eq 10) becomes clear
when we draw the connection to singular perturbation theory.
Therefore, we now review some aspects of this theory that are
important for our argumentation.

Singularly perturbed systems admit the following canonical
representation:

whereε is a sufficiently small dimensionless parameter. Now,
we assume that the functiong can be decomposed asg(y, z, ε)
) r(y, z) + εg1(y, z, ε). Then, the “slow” subsystem (in the
limit ε f 0) is described by the differential-algebraic system

whenever the second equation in (14) defines a smooth manifold
of the formz ) z̃(y). Furthermore, this manifold is required to
be normally attracting in the following sense: the real parts of

the eigenvalues of

are negative and bounded away from 0 fory belonging to a
compact region inRn-m. Dzr(y, z̃(y)) denotes the Jacobian of
the fast subsystem (in the limitε f 0)

where the slow variablesy are to be treated as parameters. Under
these conditions, the asymptotic dynamics of then-dimensional
system (13) can be approximated for sufficiently smallε to
lowest order by

which is now an ODE system of dimensionn - m. Equation
17 is the zeroth order approximation with respect to the singular
perturbation parameterε and is well-known as the quasi-steady-
state approximation (QSSA).

When comparing (7) and (10) with (14), the motivation for
our choice of the nonlinear functionsIij

l in (8) becomes
apparent, since if we truly wish eq 10 to define a quasi-stationary
manifold in the sense of the second equation of (14), we have
to make the following identification for the components of the
vector field r:

In this case, (8) is a necessary condition for the existence of
a quasi-stationary manifold defined by (10), which seems to be
a natural class of slow manifolds that one can expect in chemical
reaction networks of mass-action type. Alternatively,r may also
be identified withĨ ijk

l depending on how many reaction steps
balance each other. The condition (8) would also be sufficient
if the two reaction rates,Ri andRj, appearing in (10) dominated
in magnitude over the others (which were absorbed into the
definition of g1). However, this requirement is automatically
ensured by our method, since we examine the ratios of the form
of (8) and (12) along the numerical integration curves. Ratios
deviating notably from the value-1 are composed of reaction
steps that do not balance each other along the integral curves
or that do not dominate over the other reaction steps in a given
rate equation. Thus, the difficulty in identifying a quasi-integral
is shifted to the task of deciding whether a given ratio of the
form of (8) or (12) is “nearly” equal to-1. As will be shown
in the two case studies later on, we have no difficulty finding
the quasi-integrals there. Nevertheless, it would be of great
benefit to have a more rigorous measure of the loose statement
“nearly constant”, especially for identifying quasi-integrals in
higher dimensional reaction networks. We will come back to
this point in the Discussion, where we also give a more formal
working definition of a quasi-integral which may serve as a
starting point for their automatic detection.

Thus, we arrive at a finite algorithm to probe a given reaction
mechanism for the existence of equilibrating reaction steps
which can be summarized in the following three steps: First,
integrate ODE system 1 over a sufficiently long time interval
to obtain the trajectories for parameter values where the
interesting asymptotic kind of dynamics is observed. Second,
check whether quasi-integrals of the form of (8) or (12) exist.
Third, apply available singular perturbation techniques to reduce
the number of dynamical degrees of freedom. In the present

Iij
l )

CliRi(x(t), k)

CljRj(x(t), k)
∼ -1 (8)

Ri(x(t), k)

Rj(x(t), k)
∼ -

Clj

Cli
(9)

Ĩ ij
l ) CliRi(x(t), k) + CljRj(x(t), k) ∼ 0 (10)

Ĩ ijk
l ) CliRi(x(t), k) + CljRj(x(t), k) + ClkRk(x(t), k) ∼ 0 (11)

Iijk
l )

CliRi(x(t), k) + ClkRk(x(t), k)

CljRj(x(t), k)
∼ -1 (12)

y̆ ) h(y, z, ε) y ∈ R
n-m

εz̆ ) g(y, z, ε) z∈ R
m (13)

y̆ ) h(y, z, 0)

0 ) r(y, z) (14)

Dzr(y, z̃(y)) (15)

dy
dτ

) 0,
dz
dτ

) r(y, z), t ) ετ (16)

y̆ ) h(y, z̃(y), 0) (17)

rij
l ≡ Ĩ ij

l ) CliRi(x, k) + CljRj(x, k) (18)
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article, we shall only make use of the QSSA to demonstrate
the general applicability of our method.

3. Methods

The numerical integration of the ODE systems for our case
studies in the next section (the hemin and the PO system) were
done using the software package XPPAUT.23 Since the reaction
rates in the considered chemical networks vary over several
orders of magnitude, we chose the “STIFF” integration algo-
rithm with a tolerance of 10-5 to guarantee numerical stability.
In addition, the equations were rescaled such that the maximal
amplitude of the rescaled variables was of order unity. Never-
theless, the ODE system describing the PO reaction remained
numerically very sensitive to slight changes in the concentrations
of four of its species. In particular, we were not able to reach
a stationary state. Even after very long integration times, the
concentrations of these four species kept fluctuating from the
fifth decimal digit on, which indicates strong correlations
between them. This is probably due to the fact that, unlike the
hemin system, the reaction mechanism of the PO system is
entirely composed of irreversible reaction steps. The aforemen-
tioned problem not only occurs in the original 10-dimensional
ODE system but persists in all of its reduced versions, too.

The method of numerical continuation (e.g., ref 24) was used
for the hemin system to compare the original as well as the
reduced ODE systems according to their local bifurcations.
Continuation calculations were always started from a stable fixed
point in the low pH region at pH∼ 5.5, which we obtained by
numerical integration of the corresponding ODE system from
zero initial conditions. The parameter region, where the stable
fixed point is reached, had to be tested in several runs. We found
k0 ) 1 × 10-4 s-1 to be a suitable starting value.

Bifurcation diagrams for the peroxidase-oxidase system were
obtained by computing the asymptotic dynamics of individual
trajectories over the whole parameter range (k12 ) 1.00× 10-7

s-1, ... , 1.34 × 10-7 s-1). For each parameter value, we
discarded a transient of 35 000 time steps and recorded the
successive maxima of the peroxidase compound III (coIII)
concentration over the next 15 000 time steps. The run for the
first parameter value of each simulation was always started from
fixed initial conditions. For subsequent runs of the same
simulation, but for other parameter values, we used the final
concentrations of the preceding run as new initial conditions.
It is thus possible to monitor the evolution of attractors as a
parameter is almost continuously varied, provided the parameter
step size is suitably adapted. We chose a step size of 10-3. When
interpreting these bifurcation diagrams, one has to take into
account that they are topologically equivalent to a Poincare´ map
where the cutting section in the extended “phase space” (which
is the usual phase space of concentrations augmented by 1
dimension for the time direction) corresponds to the time points
at which the trajectory of one of the concentration phase space
variables (in our case, coIII) exhibits a maximum. Thus, limit
cycles manifest themselves as fixed points, period-2 cycles as
period-2 points, tori as closed invariant loops, and so forth.

4. Case Studies

Example 1: The Hemin-Hydrogen Peroxide-Sulfite
Oscillator. The hemin-hydrogen peroxide-sulfite oscillator is

an example of an oscillatory system where the pH value of the
reaction medium shows periodical changes. In this reaction
system, hemin acts as a mimic for heme-containing enzymes
and provides for a feedback mechanism thatstogether with
autocatalysissallows for oscillatory dynamics. Experimental
results are reported in refs 25 and 26. The proposed reaction
mechanism27 accounts for most of the experimentally observed
dynamics. It reads

where AH+ and A correspond to the hemin molecule carrying
two aquo ligands or one aquo and one hydroxy group in its
axial positions, respectively. The reaction mechanism (eq 19)
consists of six chemical species and eight reaction steps. Four
of the species (SO32-, H2O2, H+, and A) are supplied to a
continuous-flow stirred tank reactor at a variable flow ratek0

while all six chemical species are removed from the reactor at
the same rate. Thus, there is a constant matter flow through the
reactor which keeps the reaction system away from thermody-
namic equilibrium. By changing the flow ratek0 (between 1×
10-4 and 4× 10-4 s-1), one can observe different dynamical
behavior such as stationary (nonequilibrium) states, periodic
oscillations, and burst oscillations.27

Assuming mass-action kinetics, the following system of
ordinary differential equations is derived from (19):

The parameters for the numerical integration are tabulated in
Table 1. The correspondence between chemical species and
phase space variablesx1, ... , x6 is as follows: x1 T SO3

2-, x2

T H2O2, x3 T HSO3
-, x4 T H+, x5 T A, andx6 T AH+. The

concentrations of the substances in the inflow streams are
denoted byxi

0.
ODE system 20 can be rewritten in the compact vector

notation

TABLE 1: Rate Constants and Inflow Stream Concentrations for the Hemin System (eq 20)

k1 ) 0.2 M-1‚s-1 k2 ) 1.5 M-1‚s-1 k3 ) 8.5× 106 M-2‚s-1 k4 ) 1000 s-1

k5 ) 1010 M-1‚s-1 k6 ) 0.011 s-1 k7 ) 2.5× 104 M-1‚s-1 k8 ) 1.9× 10-4 s-1

x1
0 ) 0.025 M x2

0 ) 0.045 M x4
0 ) 2.2× 10-4 M x5

0 ) 3 × 10-4 M

SO3
2- + H+ y\z

k5,k4
HSO3

-

H2O2 + SO3
2- 98

k1
SO4

2- + H2O

H2O2 + HSO3
- 98

k2
SO4

2- + H+ + H2O

H2O2 + HSO3
- + H+ 98

k3
SO4

2- + 2H+ + H2O

AH+ y\z
k6,k7

A + H+

A 98
k8

products (19)

x̆1 ) -k1x1x2 + k4x3 - k5x1x4 + k0(x1
0 - x1)

x̆2 ) -k1x1x2 - k2x2x3 - k3x2x3x4 + k0(x2
0 - x2)

x̆3 ) -k2x2x3 - k3x2x3x4 - k4x3 + k5x1x4 - k0x3

x̆4 ) k2x2x3 + k3x2x3x4 + k4x3 - k5x1x4 + k6x6 - k7x4x5 +

k0(x4
0 - x4)

x̆5 ) k6x6 - k7x4x5 - k8x5 + k0(x5
0 - x5)

x̆6 ) -k6x6 + k7x4x5 - k0x6 (20)
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where we introduce the matrix of stoichiometric coefficientsC
(without the in- and outflow terms) and the vector of reaction
ratesR as

In the first step of the reduction process, we test for chemical
constraints among the reactants, which are expressed by a
nonmaximal rank of the stoichiometric matrixC. For system
20, we find that rank(C) ) 4. We note that the two row vectors

satisfy

that is,v1
T andv2

T are left eigenvectors of the stoichiometric
matrix C for the eigenvalue zero. Therefore, we chose the
following linear coordinate transformation (eq 23) where the
last two rows of the transformation matrix are just these left
eigenvectors:

Thus, in they-coordinate system, we achieve a splitting of the
transformed ODE system into a 4-dimensional subsystem for
the variables (y1, ... , y4) and a completely decoupled 2-dimen-
sional subsystem for the variablesy5 andy6:

whereri(y) ≡ Ri(x(y)) and the functionsx(y) are given by the
inverse of (23). Due to the choice of the linear transformation

(eq 23), the last two equations in (24) only depend on the in-
and outflow terms proportional tok0. They can easily be
integrated and yield the following solution for zero initial
condition:

with

Thus, after a transient time of order 1/k0, the trajectories of
system 24 relax to a 4-dimensional attracting manifold given
by

where the essential asymptotic dynamics takes place.
Indeed, numerical simulations of the (y1, y2, y3, y4)-subsystem

of (24) with y5 and y6 being replaced by their constant
asymptotic values (eq 26) show that the resulting time series
are virtually identical to those obtained for the full 6-dimensional
system (eq 24) after an initial transient phase. By assigning
constant values toy5 andy6, we place the system from the very
beginning on a 4-dimensional manifold and neglect the (tran-
sient) approach of the trajectories toward that manifold.

We note that by rewriting the equations of (26) using
x-coordinates and the correspondence between chemical species
and phase space variables, one may provide a physical
interpretation of these equations in terms of conservation laws.
In particular, (27) and (28)

express the mass conservation of S atoms and H+ ions,
respectively. Here, one can recognize the left-hand sides of the
equations asv1

T‚x (eq 27) andv2
T‚x (eq 28), while the right-

hand sides denote the concentrations of the corresponding
chemicals in the inflow streams.

So far, we have used the constraints (eq 26) given by the
stoichiometric matrixC to identify redundant dynamical degrees
of freedom, which led us to a 4-dimensional system. In the next
step, we look for quasi-integrals as described in the second
section of this article. As an example, consider the rate equation
for x1:

There are two potential quasi-integralsIij of the form of (8),
namely,

Since the reaction rates inIij always appear with opposite signs,

x3 ) C‚R(x, k) + k0(x
0 - x) (21)

C ) (-1 0 0 1 -1 0 0 0
-1 -1 -1 0 0 0 0 0
0 -1 -1 -1 1 0 0 0
0 1 1 1 -1 1 -1 0
0 0 0 0 0 1 -1 -1
0 0 0 0 0 -1 1 0

)R ) (k1x1x2

k2x2x3

k3x2x3x4

k4x3

k5x1x4

k6x6

k7x4x5

k8x5

)
(22)

v1
T ) (1, -1, 1, 0, 0, 0)

v2
T ) (0, 0, 1, 1, 0, 1)

v1
T‚C ) 0‚v1

T

v2
T‚C ) 0‚v2

T

(y1

y2

y3

y4

y5

y6

)) (0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
1 -1 1 0 0 0
0 0 1 1 0 1

)(x1

x2

x3

x4

x5

x6

) (23)

y̆1 ) -r1(y) - r2(y) - r3(y) + k0(x2
0 - y1)

y̆2 ) -r6(y) + r7(y) - k0y2

y̆3 ) -k8y3 + r6(y) - r7(y) + k0(x5
0 - y3)

y̆4 ) -r1(y) + r4(y) - r5(y) + k0(x1
0 - y4)

y̆5 ) k0(x1
0 - x2

0 - y5)

y̆6 ) k0(x4
0 - y6) (24)

y5(t) ) (x1
0 - x2

0)(1 - exp(-k0t))

y6(t) ) (x4
0)(1 - exp(-k0t)) (25)

lim
tf∞

y5(t) ) x1
0 - x2

0 ): y5
∞

lim
tf∞

y6(t) ) x4
0 ): y6

∞

y5 ) y5
∞, y6 ) y6

∞ (26)

[SO3
2-] - [H2O2] + [HSO3

-] ) [SO3
2-]0 - [H2O2]

0 (27)

[HSO3
-] + [H+] + [AH+] ) [H+]0 (28)

x̆1 ) -k1x1x2 + k4x3 - k5x1x4 + k0(x1
0 - x1)

I14(x(t)) ≡ k1x1(t)x2(t)

k4x3(t)
∼ 1, I45(x(t)) ≡ k4x3(t)

k5x1(t)x4(t)
∼ 1 (29)
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we multiplied both sides of eq 8 by-1 to achieve the form of
(29). By numerical simulations, we find thatI45(x(t)) ∼ 1, while
I14(x(t)) remains a heavily oscillating function in the long time
limit, as shown in Figure 1. This procedure is repeated for the
other five rate equations (results not shown). However, ad-
ditional quasi-integrals cannot be found. Note that it is not
necessary to check the rate equation forx̆2 for quasi-integrals,
since all reaction rates appear with the same (negative) sign.

Following the argumentation of Stiefenhofer,22 we assume
an embedding of the 4-dimensional ODE system into an
ε-dependent family of systems such thatĨ45 ) r4(y) - r5(y)
becomes the dominant reaction step:

whereε is a small dimensionless quantity. After rescaling of
time according to

and taking the limitε f 0, we obtain the following ODE for
the fast subsystem:

Its stationary points, given byr4(y) - r5(y) ) 0, define the quasi-
stationary manifold:

The occurrence of the small parameterε in front of the time
derivative of y4 in (30) indicates that this quantity varies
significantly only on short time scales and thereafter instanta-
neously follows the dynamics of the slow variables according
to (33). Consequently, we have to solve the defining equation

of the quasi-stationary manifold (eq 33) for nonnegativey4. The
solution of this quadratic equation is

where we must consider only the positive square root, sincey4

represents a concentration and thereforey4 g 0 must hold. That
(33) really defines an attracting quasi-stationary manifold can
be checked by direct computation of the Jacobian along this
manifold:

On the other hand, it is known28 that if the fast subsystem is
entirely composed of reversible reactions, as it is in our case
(r4 andr5 correspond to the first reversible reaction step in (19)),
then its stationary points automatically define an attracting
manifold for the original flow.

As a result of the QSSA using (33), we obtain the following
3-dimensional ODE system:

where we have explicitly indicated the dependence of the
reaction ratesri on the collection of slow (y′ ) {y1, y2, y3}) and
fast (y4) variables. Together with the algebraic relations (26)
and (34), this 3-dimensional ODE system quantitatively repro-
duces the dynamical features of the original 6-dimensional one
(eq 20), the details of which have been reported earlier.27 We
ascertained the validity of our approximation by comparing time
series for the entire range of relevant values of the bifurcation
parameterk0. As a result, there are essentially no differences

Figure 1. Ratios of reaction rates during the search for quasi-integrals in the hemin-hydrogen peroxide-sulfite oscillator. (a)I45 ) R4/R5 ∼ 1
approaches a constant value in the long-term limit and therefore defines a quasi-stationary manifold. (b) In contrast,I14 ) R1/R4 remains a heavily
oscillating function bounded away from 1 and therefore does not fulfill the condition for a quasi-integral. Note the scale difference of the axes for
I45 and I14.

y̆1 ) -r1(y) - r2(y) - r3(y) + k0(x2
0 - y1)

y̆2 ) -r6(y) + r7(y) - k0y2

y̆3 ) -k8y3 + r6(y) - r7(y) + k0(x5
0 - y3)

εy̆4 ) r4(y) - r5(y) - ε(r1(y) + k0(x1
0 - y4)) (30)

τ ) t
ε

(31)

d
dτ

y4 ) r4(y) - r5(y) (32)

y4 ) 1
2(y5

∞ - y6
∞ + y1 + y2 -

k4

k5
) +

1
2x(y5

∞ - y6
∞ + y1 + y2 +

k4

k5
)2

+ 4
k4

k5
(y6

∞ - y2) (34)

∂

∂y4
(r4 - r5)|y4)y4(y1,y2)

) -k4 - k5(y6
∞ - y5

∞ - y1 - y2 +

2y4)|y4)y4(y1,y2)

) -k5x(y5
∞ - y6

∞ + y1 + y2 +
k4

k5
)2

+ 4
k4

k5
(y6

∞ - y2)

y̆1 ) -r1(y′, y4) - r2(y′, y4) - r3(y′, y4) + k0(x2
0 - y1)

y̆2 ) -r6(y′) + r7(y′, y4) + k0(x6
0 - y2)

y̆3 ) -r8(y′) + r6(y′) - r7(y′, y4) + k0(x5
0 - y3) (35)
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between the dynamics produced by the 6- and the 3-dimensional
models. This conclusion is further supported by virtually
identical bifurcation diagrams for both systems (not shown).

Example 2: The Peroxidase-Oxidase Reaction. The
peroxidase-oxidase reaction is the prototypical example of an
oscillatory enzyme system (for a review, see ref 29). Consider-
able experimental effort has been devoted to identifying the
individual reaction steps that occur in this reaction system
(reviewed in ref 30). At the same time, a series of theoretical
investigations has been conducted to reproduce the observed
type of dynamics in numerical simulations (reviewed in ref 31).
The starting point of our analysis is a reaction mechanism
proposed by Bronnikova, Fed’kina, Schaffer, and Olsen32 (Table
2) that shows periodic mixed-mode oscillations as well as
(homoclinic) chaos.33,34It comprises 14 individual reaction steps
and 10 species, yielding a 10-dimensional ODE system based
on mass-action kinetics:

The parameter values for our simulations as well as the oxygen
concentration [O2]eq at equilibrium between the gas/liquid phase
are taken from ref 33 and are compiled in Table 2. We used
zero initial values for all species except forx10

0 , which was set
to the total enzyme concentration of 1.5× 10-6 M. k12 was
taken as the bifurcation parameter ranging between 1.00× 10-7

and 1.34× 10-7 M s-1. The correspondence between phase
space variablesx1, ... , x10 and chemical species is as follows:
x1 T Per5+ (or coI),x2 T Per4+ (or coII), x3 T Per6+ (or coIII),
x4 T H2O2, x5 T NAD•, x6 T NADH, x7 T O2, x8 T O2

-, x9

T Per2+, andx10 T Per3+. Pern+ denotes the different oxidation
states of the enzyme peroxidase.

Before applying the algorithm for finding quasi-integrals, we
can immediately eliminate one dynamical degree of freedom,
since the rank of the stoichiometric matrix of ODE system 36
is 9. The consequential linear relationship between some of the
chemical species can be taken as

which simply means that the total amount of enzyme peroxidase
is conserved in time. Note that the reduction from 10 to 9
dimensions does not lead to any information loss due to (37)
being an exact conservation relation. Therefore, we shall treat
the 9- and 10-dimensional systems on equal footing below. As
in (29), we obtained three candidates for quasi-integrals in the
PO system:

They are shown in Figure 2a-c (cf. Table 2 for the definition
of theRi). In I127 andI567, we needed to balance three terms for
obtaining approximately constant functions. In particular, Figure
2d shows that it is not enough to balance onlyR1 with R2,
because there are time intervals whereI12 shows large deviations
from the constant value 1. The attractivity of the manifolds (eq
38) is evident from direct calculation of the corresponding
Jacobian, and the application of the QSSA forx4, x8, and x2

yields successively an 8-, 7-, and finally the following 6-di-
mensional ODE system in the originalx-variables:

wherex8 in (39) still has to be replaced by its expression in the
second equation of (38). To compare the dynamics of the
reduced systems with the original one, we calculated Poincare´
maps of successive maxima of the coIII concentration as the
NADH inflow rate k12 is continuously varied. This procedure
yields local bifurcation diagrams which resemble those from
ref 34 due to a similar choice of parameter sets.

TABLE 2: Detailed (BFSO) Model of the
Peroxidase-Oxidase Reaction32a

reaction Ri

rate constant
ki

b

(1) NADH + O2 + H+ f NAD+ + H2O2 k1[NADH][O 2] 3.0c

(2) H2O2 + Per3+ f coI + H2O k2[H2O2][Per3+] 1.8 × 107 c

(3) coI + NADH f coII + NAD• k3[coI][NADH] 4.0 × 104 c

(4) coII + NADH f Per3+ + NAD• k4[coII][NADH] 2.6 × 104 c

(5) NAD• + O2 f NAD+ + O2
- k5[NAD •][O2] 2.0 × 107 c

(6) O2
- + Per3+ f coIII k6[O2

-][Per3+] 1.7 × 107 c

(7) 2O2
- + 2H+ f H2O2 + O2 k7[O2

-]2 5.0× 106 c

(8) coIII + NAD• f coI + NAD+ k8[coIII][NAD •] 1.35× 108 c

(9) 2NAD• f NAD2 k9[NAD •]2 5.6× 107 c

(10) Per3+ + NAD• f Per2+ + NAD+ k10[Per3+][NAD •] 1.8 × 106 c

(11) Per2+ + O2 f coIII k11[Per2+][O2] 1.0 × 105 c

(12) f NADH k12 variabled

(13) O2(gas)f O2(liquid) k13[O2]eq 6.0× 10-3 e,f

(-13) O2(liquid) f O2(gas) k-13[O2] 6.0 × 10-3 e

a The rate constants are taken from ref 33.b The concentrations of
H+ are taken to be constant and absorbed into the rate constantski,
since the reaction system runs in a buffer solution at pH 6.3.c In M-1

s-1. d Between 1.0× 10-7 and 1.345× 10-7 M s-1. e In s-1. f The value
of [O2]eq is 1.2× 10-5 M.

x̆1 ) k2x4x10 - k3x1x6 + k8x3x5

x̆2 ) k3x1x6 - k4x2x6

x̆3 ) -k8x3x5 + k11x7x9 + k6x8x10

x̆4 ) k1x6x7 + k7x8
2 - k2x4x10

x̆5 ) k3x1x6 + k4x2x6 - k5x5x7 - k8x3x5 - 2k9x5
2 - k10x5x10

x̆6 ) -k1x6x7 - k3x1x6 - k4x2x6 + k12

x̆7 ) -k1x6x7 - k5x5x7 + k7x8
2 - k11x7x9 - k-13x7 +

k13[O2]eq

x̆8 ) k5x5x7 - 2k7x8
2 - k6x8x10

x̆9 ) k10x5x10 - k11x7x9

x̆10 ) -k2x4x10 + k4x2x6 - k6x8x10 - k10x5x10 (36)

x9 ) x10
0 - x10 - x3 - x1 - x2 (37)

I127 )
R1 + R7

R2
∼ 1 T x4 ∼ k1x6x7 + k7x8

2

k2x10

I567 )
R5

R6 + 2R7
∼ 1 T x8 ∼ - 1

4

k6

k7
x10 +

x 1
16(k6

k7
x10)2

+ 1
2

k5

k7
x5x7

I34 )
R3

R4
∼ 1 T x2 ∼ k3

k4
x1 (38)

x̆1 ) k1x6x7 + k7x8
2 - k3x1x6 + k8x3x5

x̆3 ) k6x10x8 - k8x5x3 + k11x7x9

x̆5 ) 2k3x1x6 - k5x5x7 - k8x3x5 - 2k9x5
2 - k10x5x10

x̆6 ) -k1x6x7 - 2k3x1x6 + k12

x̆7 ) -k1x6x7 - k5x5x7 + k7x8
2 - k11x7x9 - k-13x7 +

k13[O2]eq

x̆10 ) -k1x6x7 - k7x8
2 + k3x1x6 - k6x10x8 - k10x5x10

(39)
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Let us now address the most prominent dynamical changes
that are observed during the successive reduction from a 10-
variable to a 6-variable ODE system. Our analysis is based on
a qualitative agreement of the bifurcation scenarios in the
different versions of the reaction model; a detailed quantitative
investigation is beyond the scope of the present article, in which

we mainly focus on the demonstration of the method of quasi-
integrals. Figure 3a shows the bifurcation scenario in the 10/
9-dimensional system, as it has already been investigated in ref
33. Of particular interest are the mixed-mode statesLS. (The
notationLS denotes a periodic oscillatory state where one period
consists ofL large andS small amplitude oscillations.) The

Figure 2. Quasi-integrals in the peroxidase-oxidase system. There are three possible candidates for quasi-stationary manifolds given byI127 (a),
I567 (b), andI34 (c). I12 (d) shows that sometimes it is not sufficient to balance only two reaction steps to find a quasi-integral: compare withI127

(a), where three reaction steps have been used for the balance.

Figure 3. Bifurcation diagrams showing the maxima of peroxidase compound III (coIII) concentration as the NADH inflow ratek12 is varied: the
original 10-/9-dimensional system (a); the 8-dimensional system (usingI127 ∼ 1) (b); the 7-dimensional system (usingI567 ∼ 1) (c); the 6-dimensional
system (usingI34 ∼ 1) (d). The mixed-mode states as well as the alternating periodic and chaotic windows appear in all of the reduced systems
(b-d) but at slightly different parameter values (d). The chaotic windows are less pronounced in the 6-dimensional reduced system (d).
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mixed-mode states as well as the alternating periodic and chaotic
windows are clearly preserved throughout the reduction pro-
cedure. The bifurcation scenarios for the reduced 8- and
7-dimensional systems are in very good quantitative agreement
with the original 10/9-dimensional one (Figure 3b,c). This
finding is also supported by nearly coinciding time series with
respect to amplitude and frequency of the oscillations and by
nearly identical 3-dimensional projections of the phase portrait.
It is only for the 6-dimensional system that we find some
quantitative deviations from the original dynamical behavior,
as the amplitude and frequencies of the oscillations are slightly
altered. There, we also observe a shift in parameter space where
the first chaotic and subsequent mixed-mode states emerge
(Figure 3d). Moreover, the domains of chaotic dynamics are
less pronounced, but it seems that the resolution of the periodic
windows between two chaotic ones is increased.

The chemical interpretation of the quasi-integrals (eq 38) leads
to surprising insights on the role of the two oxygen species O2

-

(x8) and H2O2 (x4) in the PO mechanism32 (Table 2). FromI127

and I567, it becomes evident that the ratios of production and
consumption of O2

-
and H2O2, respectively, are nearly con-

stant throughout the reaction. Consequently, these two species
can be considered as quasi-stationary, so that molecular oxygen
O2 (x7) remains the only dynamical oxygen-containing species.
A similar but less surprising argument applies to the quasi-
integral I34 which shows that Per4+ (x2) does not accumulate
during the reduction

since its production viaR3 is effectively compensated by its
consumption inR4.

5. Discussion

In this work, we present a numerical method for systemati-
cally finding quasi-stationary manifolds of a particular class in
chemical reaction networks. It is shown that quasi-integrals of
the form of (8) and (12) may arise from certain ratios of
components of the reaction rate vector. Thus, the class of quasi-
stationary manifolds that may be detected not only includes
linear relationships among the phase space variables but
generically also contains those which are defined by nonlinear
equations. The crucial step in identifying a quasi-integral is to
define under which conditions the graph of a quasi-integral is
to be regarded as nearly constant. Especially for higher
dimensional ODE systems, it would be of great value to have
a numerical measure which allows for a more systematic
identification of quasi-integrals. On the basis of some common
properties, we suggest the following working definition: a quasi-
integral I(x) is a nonconstant function of the phase space
variables that is confined along the trajectories almost every-
where to a stripe around the value 1 (or-1) of adjustable
thicknessµ. This means that outliers are only allowed in time
intervals of adjustable lengthδ which should be small compared
to typical time scales in the system such as the period of the
oscillations.

After we have decided whether a certain ratioIij is to be
regarded as nearly constant, our method is quite similar to other
semiobjective methods such as principal component analysis
or even singular perturbation theory. For the former method,
one has to decide how many modes to keep in order to
reconstruct the original data based on the eigenvalue spectrum
of a suitable covariance matrix. However, since there is no a
priori interpretation of these modes, so is a rigorous measure

indicating how many modes to retain. On the other hand, for
singular perturbation theory to be valid, the singular perturbation
parameterε is required to be sufficiently small. In practical
applications, though,ε may even become of order unity for some
systems without leaving the range where singular perturbation
theory provides a satisfactory approximation. Thus, for a
particular system, one usually relies on numerical simulations
in order to test the validity of the approximation. Indeed, this
is exactly what we do, having identified a possible candidate
for a quasi-stationary manifold by visual inspection of the time
seriesI(x(t)) of a quasi-integralI(x) (Figures 1 and 2).

We have demonstrated our method using the 6-dimensional
hemin and 10-dimensional PO systems. The reaction mechanism
(eq 19) of the hemin system comprises two equilibria, and it is
not too surprising that one of them corresponds to the quasi-
integral we found. The QSSA seems to be appropriate and yields
a 3-dimensional ODE system (eq 35), which quantitatively
agrees with the dynamical properties of the original 6-dimen-
sional mechanism (eq 20). In contrast, the PO reaction system
is almost exclusively composed of irreversible reaction steps.
Nevertheless, three possible candidates for quasi-stationary
manifolds (eq 38) could be identified by the method of quasi-
integrals, thus demonstrating that the method works not only
for reaction mechanisms containing equilibria. Furthermore, two
of the quasi-integrals yielded very good quantitative 8- and
7-dimensional approximations to the original dynamics, whereas
there are slight changes in the parameter values where the
bifurcations in the reduced 6-dimensional system occur. The
reason for this behavior may be seen in the much larger
deviations of the quasi-integralI34 from the constant value 1 as
compared toI127 andI567 (Figure 2), indicating that the manifold
defined byI34 ∼ 1 is not as “quasi-stationary” as both of the
other ones.

In summary, the method of quasi-integrals has been success-
fully applied to both a system containing fast equilibrium
reactions and a reaction mechanism with rapidly equilibrating
irreversible reaction steps. To fully appreciate its scope, the
method should be tested for other reaction networks. In
particular, our method is not restricted to mass-action kinetics;
it can be easily applied to other types of kinetics, too. The only
requirement is that the right-hand side of eq 1 is of the form of
(6), that is, a sum of terms with different signs, so that there is
some chance that some reaction steps balance each other.
Therefore, it is not relevant whether the components of the
reaction rate vectorR are simple monomials such as in the mass-
action case or more complicated functions. Hence, the method
of quasi-integrals should be applicable to a broad spectrum of
reaction mechanisms.

In conclusion, we conjecture that quasi-integrals are a valuable
supplement to existing methods for the reduction of chemical
reaction mechanisms, such as the computational singular
perturbation method, since it generically also detects nonlinear
quasi-stationary manifolds which, in general, are hard to find
analytically.
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